Middleware 扩展

介绍

Kitex 作为一个轻量级的 RPC 框架,提供了十分强大的扩展性,主要提供了两种扩展的方法:一种比较 low level 的是直接增加 middleware 中间件;还有一种比较 high level 的方法是增加 suite 套件。以下主要介绍 middleware 中间件的使用方式。

Middleware

middleware 是一种比较 low level 的扩展方式,大部分基于 Kitex 的扩展和二次开发的功能都是基于 middleware 来实现的。 Kitex 的中间件定义在 pkg/endpoint/endpoint.go 中,其中最主要的是两个类型:

  1. Endpoint 是一个函数,接受 ctx、req、resp ,返回err,可参考下文「示例」代码;
  2. Middleware(下称MW)也是一个函数,接收同时返回一个 Endpoint。
    type Middleware func(Endpoint) Endpoint

实际上一个中间件就是一个输入是 Endpoint,输出也是 Endpoint 的函数,这样保证了对应用的透明性,应用本身并不会知道是否被中间件装饰的。由于这个特性,中间件可以嵌套使用。

中间件是串连使用的,通过调用传入的 next,可以得到后一个中间件返回的 response(如果有)和 err,据此作出相应处理后,向前一个中间件返回 err(务必判断 next err 返回,勿吞了 err )或者设置 response。

客户端中间件

有两种方法可以添加客户端中间件:

  1. client.WithMiddleware 对当前 client 增加一个中间件,在 Service 熔断和超时中间件之后执行;
  2. client.WithInstanceMW 对当前 client 增加一个中间件,在服务发现、负载均衡之后执行,如果有实例熔断器,会在实例熔断器后执行(如果使用了 Proxy 则不会调用到,如 Mesh 模式下)。 注意,上述函数都应该在创建 client 时作为传入的 Option。

客户端中间件调用顺序;

  1. xDS 路由、服务级别熔断、超时;
  2. ContextMiddleware;
  3. client.WithMiddleware 设置的中间件;
  4. ACLMiddleware;
  5. 服务发现、实例熔断、实例级 Middleware / 服务发现、代理 Middleware
  6. IOErrorHandleMW

以上可以详见https://github.com/cloudwego/kitex/blob/develop/client/client.go

Context 中间件

Context 中间件本质上也是一种客户端中间件,但是区别是,其由 ctx 来控制是否注入以及注入哪些中间件。 Context 中间件的引入是为了提供一种能够全局或者动态注入 Client 中间件的方法,典型的使用场景比如统计某个接口调用了哪些下游。 可以通过 ctx = client.WithContextMiddlewares(ctx, mw) 来向 ctx 注入中间件。 注意:Context 中间件会在 client.WithMiddleware 设置的中间件之前执行。

服务端中间件

服务端的中间件和客户端有一定的区别。 可以通过 server.WithMiddleware 来增加 server 端的中间件,使用方式和 client 一致,在创建 server 时通过 Option 传入。

服务端中间件调用顺序:

  1. ErrHandleMW
  2. ACLMiddleware
  3. server.WithMiddleware 设置的中间件

以上可以详见https://github.com/cloudwego/kitex/blob/develop/server/server.go

示例

我们可以通过以下这个例子来看一下如何使用中间件。

获取 Request/Reponse

假如我们现在需要在请求前打印出 request 内容,再请求后打印出 response 内容,可以编写如下的 MW:

/*
type Request struct {
   Message        string            `thrift:"Message,1,required" frugal:"1,required,string" json:"Message"`
   Base           *base.Base        `thrift:"Base,255,optional" frugal:"255,optional,base.Base" json:"Base,omitempty"`
}

type Response struct {
   Message  string         `thrift:"Message,1,required" frugal:"1,required,string" json:"Message"`
   BaseResp *base.BaseResp `thrift:"BaseResp,255,optional" frugal:"255,optional,base.BaseResp" json:"BaseResp,omitempty"`
}
*/
import "github.com/cloudwego/kitex/pkg/utils"

func ExampleMiddleware(next endpoint.Endpoint) endpoint.Endpoint {
	return func(ctx context.Context, request, response interface{}) error {
		if arg, ok := request.(utils.KitexArgs); ok {
			if req := arg.GetFirstArgument().(*echo.Request; req != nil {
				klog.Debugf("Request Message: %v", req.Message)
			}
		}
		err := next(ctx, request, response)
		if result, ok := response.(utils.KitexResult); ok {
			if resp, ok := result.GetResult().(*echo.Response); ok {
				klog.Debugf("Response Message: %v", resp.Message)
				// resp.SetSuccess(...) 可以用于替换自定义的响应结果
				// 但要注意:类型应与该 method 的结果类型相同
			}
		}
		return err
	}
}

以上方案仅为示例,慎用于生产:因为日志输出所有 req/resp 会有性能问题。无视 response 体大小,输出大量日志是一个非常消耗性能的操作,一个特别大的 response 可以是秒级的耗时。

注意事项

如果自定义 middleware 中用到了 RPCInfo,要注意 RPCInfo 在 rpc 结束之后会被回收,所以如果在 middleware 中起了 goroutine 操作 RPCInfo 会出问题,请避免这类操作。

gRPC 中间件

众所周知,kitex 除了 thrift,还支持了 protobuf 和 gRPC 的编解码协议,其中 protobuf 是指只用 protobuf 来定义 payload 格式,并且其 service 定义里的方法只有 unary 方法的情况;一旦引入了 streaming 方法,那么 kitex 会使用 gRPC 协议来做编解码和通信。

使用 protobuf(仅 unary)的服务,其中间件的编写与上文一致,因为两者的设计是完全一样的。

如果使用了 streaming 方法,那么中间件的编写则是完全不同的,因此,这里单独将gRPC streaming的中间件的用法说明列为一个单元。

对于 streaming 方法,由于存在 client stream、server stream、bidirectional stream 等形式,并且 message 的收发(Recv & Send)都是有业务逻辑控制的,所以中间件并不能 cover 到 message 本身。因此,假设要在 Message 收发环节实现请求/响应的日志打印,需要对 Kitex 的 streaming.Stream 做如下封装:

type wrappedStream struct {
        streaming.Stream
}

func (w *wrappedStream) RecvMsg(m interface{}) error {
        log.Printf("Receive a message: %T(%v)", m, m)
        return w.Stream.RecvMsg(m)
}

func (w *wrappedStream) SendMsg(m interface{}) error {
        log.Printf("Send a message: %T(%v)", m, m)
        return w.Stream.SendMsg(m)
}

func newWrappedStream(s streaming.Stream) streaming.Stream {
        return &wrappedStream{s}
}

然后,在中间件内在特定调用时机插入封装后的 streaming.Stream 对象。

import "github.com/cloudwego/kitex/pkg/streaming"

// 一个能同时适用于客户端和服务端的 kitex gRPC/thrift/ttheader-protobuf 的中间件
func DemoGRPCMiddleware(next endpoint.Endpoint) endpoint.Endpoint {
    return func(ctx context.Context, req, res interface{}) error {

        var Nil interface{} // go 里不能直接 switch nil
        switch Nil {
        case req: // 当前中间件用于客户端,并且是 streaming 方法
            err := next(ctx, req, res)
            // stream 对象要在最终 endpoint return 后才能获取
            if tmp, ok := res.(*streaming.Result); err == nil && ok {
                tmp.Stream = newWrappedStream(tmp.Stream) // 包装 stream 对象
            }
            return err
        case res: // 当前中间件用于服务端,并且是 streaming 方法
            if tmp, ok := req.(*streaming.Args); ok {
                tmp.Stream = newWrappedStream(tmp.Stream) // 包装 stream 对象
            }
        default: // 纯 unary 方法,或 thrift 方法
            // do something else
        }
        return next(ctx, req, res)
    }
}

在 Kitex middleware 内获取的 request/response 参数类型在 gRPC 不同场景下的说明:

场景 Request 类型 Response 类型
Kitex-gRPC Server Unary/Streaming *streaming.Args nil
Kitex-gRPC Client Unary *xxxservice.XXXMethodArgs *xxxservice.XXXMethodResult
Kitex-gRPC Client Streaming nil *streaming.Result

总结

Middleware 是一种比较低层次的扩展的实现,一般用于注入包含特定功能的简单代码。而在复杂场景下,一个 middleware 封装通常无法满足业务需求,这时候需要更完善的套件组装多个 middleware/options 来实现一个完整的中间层,用户可基于 suite 来进行开发,参考扩展套件Suite

FAQ

如何在 middleware 里 recover handler 排除的 panic

问题: 想在 middleware 里 recover 自己业务的 handler 抛出的 panic,发现 panic 已经被框架 recover 了。

说明: 框架会 recover Handler 内的 panic 并上报。若希望在自定义的 middleware 中捕获 panic,可以在 middleware 内判断返回的 error 的类型(是否为 kerrors.ErrPanic)。

func TestServerMiddleware(next endpoint.Endpoint) endpoint.Endpoint {
   return func(ctx context.Context, req, resp interface{}) (err error) {
      err = next(ctx, req, resp)
      if errors.Is(err, kerrors.ErrPanic) {
         fmt.Println("capture panic")
      }
      return err
   }
}

如何在中间件获取到真实的 Request / Response

由于实现需要,endpoint.Endpoint 中传递的 req 和 resp 并不是真正用户所传递的 req 和 resp,而是由 Kitex 包装过一层的一个对象,具体为类似如下的一个结构。

Thrift

// req
type ${XService}${XMethod}Args struct {
    Req *${XRequest} `thrift:"req,1" json:"req"`
}

func (p *${XService}${XMethod}Args) GetFirstArgument() interface{} {
    return p.Req
}


// resp
type ${XService}${XMethod}Result struct {
    Success *${XResponse} `thrift:"success,0" json:"success,omitempty"`
}

func (p *${XService}${XMethod}Result) GetResult() interface{} {
    return p.Success
}

Protobuf

// req
type ${XMethod}Args struct {
    Req *${XRequest}
}

func (p *${XMethod}Args) GetReq() *${XRequest} {
    if !p.IsSetReq() {
        return ${XMethod}Args_Req_DEFAULT
    }
    return p.Req
}


// resp
type ${XMethod}Result struct {
    Success *${XResponse}
}

func (p *${XMethod}Result) GetSuccess() *${XResponse} {
    if !p.IsSetSuccess() {
        return ${XMethod}Result_Success_DEFAULT
    }
    return p.Success
}

以上生成代码可以在 kitex_gen 中看到。 所以,用户有三种方案获取到真实的 req 和 resp:

  1. 如果你能确定调用的具体是哪个方法,用的 req 的类型,可以直接通过类型断言拿到具体的 Args 类型,然后通过 GetReq 方法就能拿到真正的 req;
  2. 对于 thrift 生成代码,通过断言 GetFirstArgument 或者 GetResult,获取到 interface{},然后进行类型断言成真实的 req 或者 resp(注意:由于返回的 interface{} 包含类型,interface{} 判断 nil 无法拦截 req/resp 本身为空指针的情况,需判断断言后的 req/resp 是否为空指针);
  3. 通过反射方法获取真实的请求/响应体,参考代码:
var ExampleMW endpoint.Middleware = func(next endpoint.Endpoint) endpoint.Endpoint {
    return func(ctx context.Context, request, response interface{}) error {
        reqV := reflect.ValueOf(request).MethodByName("GetReq").Call(nil)[0]
        log.Infof(ctx, "request: %T", reqV.Interface())
        err := next(ctx, request, response)
        respV := reflect.ValueOf(response).MethodByName("GetSuccess").Call(nil)[0]
        log.Infof(ctx, "response: %T", respV.Interface())
        return err
    }
} 

最后修改 December 11, 2023 : feat: logos scroll (#885) (be61d2c)